Monomial bases for broken circuit complexes
نویسندگان
چکیده
منابع مشابه
Monomial bases for broken circuit complexes
Let F be a field and let G be a finite graph with a total ordering on its edge set. Richard Stanley noted that the Stanley-Reisner ring F (G) of the broken circuit complex of G is CohenMacaulay. Jason Brown gave an explicit description of a homogeneous system of parameters for F (G) in terms of fundamental cocircuits in G. So F (G) modulo this hsop is a finite dimensional vector space. We conje...
متن کاملBroken Circuit Complexes: Factorizations and Generalizations
Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of the characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid fa...
متن کاملBroken circuit complexes: Factorizations and generalizations
Motivated by the question of when the characteristic polynomial of a matroid factorizes, we study join-factorizations of broken circuit complexes and rooted complexes (a more general class of complexes). Such factorizations of complexes induce factorizations not only of characteristic polynomial but also of the Orlik-Solomon algebra of the matroid. The broken circuit complex of a matroid factor...
متن کاملMonomial Representations for Grr Obner Bases Computations
Monomial representations and operations for Grr obner bases computations are investigated from an implementation point of view. The technique of vectorized monomial operations is introduced and it is shown how it expedites computations of Grr obner bases. Furthermore, a rank-based monomial representation and comparison technique is examined and it is concluded that this technique does not yield...
متن کاملMONOMIAL BASES FOR q-SCHUR ALGEBRAS
Using the Beilinson-Lusztig-MacPherson construction of the quantized enveloping algebra of gln and its associated monomial basis, we investigate q-Schur algebras Sq(n, r) as “little quantum groups”. We give a presentation for Sq(n, r) and obtain a new basis for the integral q-Schur algebra Sq(n, r), which consists of certain monomials in the original generators. Finally, when n > r, we interpre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2009
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2008.12.009